Name:

College Algebra (Math 1023) Practice Final Exam

Professor Paul Bailey April 25, 2005

The final examination will be held on Thursday, May 14, at 3 pm. It will contain fifty problems with short answers. You will have two hours to complete the final exam.

This is a practice final. Try to time yourself when you first take it. Bring any questions to the attention of the class.

Problem 1. The slope of a line between the points (3, -1) and (7, 4) is _____.

Problem 2. Let $H(x) = 5^x$. Find H(-3) and simplify: _____.

Problem 3. Let f(x) = -2x + 7 and g(x) = ax + b. Find $(f \circ g)(x)$ and simplify: _____.

Problem 4. Let $f(x) = \frac{2}{x}$. Find $\frac{f(x+h) - f(x)}{h}$ and simplify: _____.

Problem 5. Let $f(x) = x^4 - 6x^2 + 9$. Find all values of x for which f is increasing.

Use interval notation: ______.

Problem 6. Find an equation of a line perpendicular to 3x + 5y = 15 and passing through (-1, 3).

Write your answer in function form: _____.

Problem 7. The solution set of the equation |x| = x is _____.

Problem 8. Let $f(x) = x^4 - 5x^3 + 2x^2 - 7x - 9$ and g(x) = (x - 5).

Find the remainder when f(x) is divided by g(x): _____.

Problem 9. Solve $\frac{5x-5}{x+2} \ge 0$. Express the solution set in interval notation: _____.

Problem 10. Solve the system for x.

$$2x + 4y + z = 1$$
$$x - 2y - 3z = 2$$
$$x + y - z = -1$$

 $x = _$ ____.

Problem 11. Using 180 feet of fence, you build a rectangular pen which is twice as long as it is wide.
Find its area: ______.

Problem 12. Let $g(x) = x^4 - 7x^3 + 12x^2 + 4x - 8$. Find g(2) and use it to find a linear factor of g(x).

g(2) = _____ A linear factor of g(x) is _____.

Problem 13. Let $V(h) = \frac{4\pi}{3}(15h - 7h^2 + h^3)$. Find $V(\frac{1}{2})$: ______.

Problem 14. Solve: $x^3 - 6x^2 - 13x + 42$. The solution set is _____.

Problem 15. Let $f(x) = e^{2-x}$. Graph f(x).

-	-
· ·	-
	-
	_
	-
	-
-	-
· · ·	-
	-
	-
	-
· · ·	-
· ·	-
	-
	_

Problem 16. Solve $\ln(2x+5) - \ln(3) = \ln(3x-1)$. The solution set is: _____.

Problem 17. Let $f(x) = -\log_5(2x)$. Is f(x) increasing or decreasing? _____.

Problem 18. Solve: $x^3 - 3x^2 + 5x - 15 = 0$. The solution set is: _____.

Problem 19. Solve: $\frac{\log x}{\log 5} = \log x - \log 5$. The solution set is: _____.

Problem 20. Solve: $\ln(-x) \ge 0$. The solution set is: _____.

Problem 21. Let
$$f(x) = \begin{cases} 3x^2 & \text{if } x < 0; \\ 2x^3 & \text{if } x \ge 0. \end{cases}$$

Evaluate $f(5) = _____$.

Problem 22. Let $g(x) = \frac{x^3 - 15}{x^5 + 2x + 2}$. Does the graph of g(x) have a horizontal asymptote? ______.

Problem 23. Let a_1, a_2, \ldots, a_n be an arithmetic sequence and find the indicated quantity.

 $a_1 = 5, a_{16} = 89, s_{16} = _$ _____.

Problem 24. Let a_1, a_2, \ldots, a_n be a geometric sequence and find the indicated quantity.

 $a_1 = 21, a_2 = 7, a_6 = _$ _____.

Problem 25. Find the value of the infinite geometric series.

 $21 + 7 + \frac{7}{3} + \frac{7}{9} + \dots =$ _____.

Problem 26. The *y*-intercept of the line going through the points (7, 2) and (5, 4) is _____.

Problem 27. Solve the system of linear equations.

2x + 3y = -3-x + 6y = 5

 $(x,y) = \underline{\qquad}.$

Problem 28. Solve: 4(x+2) - 5(x-3) > 5. Express the solution set in interval notation:

Problem 29. Solve: $x^2 + 3x - 18 < 0$. Express the solution set in interval notation: ______.

Problem 30. The graph of the function $f(x) = x^5 + 2x$ is symmetric about

- (a) the x-axis;
- (b) the y-axis;
- (c) the origin;
- (d) none of the above.

Problem 31. Let $f(x) = \frac{x^2 + 1}{x^3 - 2x^2 - 3x + 6}$. Find the domain of f: _____.

Problem 32. Find a polynomial of minimal degree with real coefficients with zeros 3 and 2i.

Express f(x) in standard form: _____.

Problem 33. Let a_1, a_2, \ldots, a_n be an arithmetic sequence, and find the indicated quantity.

 $a_1 = 5, d = \frac{2}{3}, a_{50} = _$ _____.

Problem 34. If $\log_b(81) = L$, then $\log_b(\frac{1}{3}) =$ _____.

Problem 35. You invest two thousand dollars at six percent annual interest compounded monthly.

At the end of five years your investment will be worth: _____.

Problem 36. Evaluate: $\log_7 311 =$ _____.

Problem 37. A certain element decays with a half-life of 54 years. If you are given 40 grams of this element, how much will you have in 12 years?

Problem 38. Evaluate: $\sum_{n=3}^{5} (3n^2 - 2n) =$ _____.

Problem 39. Solve: $5^{2x+3} = \frac{1}{25}$. The solution set is: _____.

Problem 40. Find the equation of the line through (4,3) with slope $m = -\frac{1}{3}$: ______.

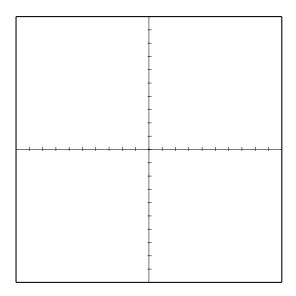
Problem 41. Solve: |ax + b| = |cx + d|. The solution set is: _____.

Problem 42. Solve: $\left|\frac{3x-2}{4}\right| \leq 7$. The solution set is: _____.

Problem 43. Find a cubic polynomial f(x) is zeros -1, 2, and 5, such that f(3) = 4.

Problem 44. Solve the system of equations for *y*.

$$4x - 2y = -3$$
$$-x + 3y = 5$$


y =_____.

Problem 45. Find the vertical asymptote of $f(x) = \frac{2x^2 - 1}{3x + 5}$: ______.

Problem 46. Let f(x) = 3x + 2 and $g(x) = x^2 - 5$. Find $(f \circ g)(x)$: _____.

Problem 47. Let f(x) = 3x + 2. Find $f^{-1}(x)$: _____.

Problem 48. Graph $g(x) = \frac{x^2}{x^2 - 9}$ and label all intercepts and asymptotes.

Problem 49. Let a_1, a_2, a_3, \ldots be a geometric sequence. Find the indicated quantity.

 $a_1 = 4, a_8 = 284, r =$ _____.

Problem 50. Let $h(x) = x^{17} + 8$. Find the remainder when h(x) is divided by (x + 1): _____.